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Potential applications of memristors in low-power processors, ultra-dense memories, programmable analog integrated 
circuits, and especially neural networks, have been reported recently. This paper introduces a novel simple neural network 
having a memristive synaptic weight. Fundamental behavior of the proposed neural network is investigated through 
numerical simulations and circuital implementation. It is very interesting that this memristive neural network can exhibit 
hyperchaos although it possesses no equilibrium points. 
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1. Introduction 
 

Neural networks have been applied in diverse 

applications including optimization, system control, signal 

processing, associative memory, or pattern recognition [1-

4]. As is well known, chaos can help neural network to 

escape the local minimum or support memory storage and 

retrieval [5,6]. As a result, chaotic dynamics in neural 

networks have been studied in various researches [7-10]. 

In neurocomputing, Hopfield type neural network 

plays an important role [11-13]. Although it is relatively 

simple, it can describe brain dynamics and provide a 

model for understanding human memory [11, 14-16]. In 

practice the realization of synaptic weights in Hopfield 

neural network is a difficult issue. However, this difficulty 

can be solved by using the memristor, the fourth circuit 

element in addition to resistor, capacitor and inductor [17-

19]. In this perspective, memristor is a prime candidate to 

replicate the behavior of neuron’s synapse [20-24]. The 

peculiar features of the memristor promise to create 

complex dynamics in such neural networks. For example, 

memristive circuit based on cellular nonlinear networks 

can display chaos [25] or a small memristive neural 

network with a line of equilibrium can demonstrate 

hyperchaos [26]. It is worth noting that the last example 

belongs to a new category of systems [27]. According to a 

new classification of chaotic dynamics [28-30], there are 

two types of attractor: self-excited attractor and hidden 

attractor. A self-excited attractor has a basin of attraction 

that is excited from unstable equilibria. In contrast, hidden 

attractor cannot be found by using a numerical method in 

which a trajectory started from a point on the unstable 

manifold in the neighborhood of an unstable equilibrium 

[31]. The subject of discovering systems with hidden 

attractors has received considerable attention in the 

research community because of both academic 

significance and practical importance [32-37]. 

Motivated by intrinsic nonlinear characteristics of 

memristor, the simplicity and practical application of 

Hopfield type neural network, a simple Hopfield 

memristive neural network is proposed and studied in this 

paper. The paper is organized as follows. In the next 

section, the model of the new memristive neural network 

is introduced. Its basic dynamics are discovered in section 

3 through numerical simulations such as phase portraits, 

Lyapunov exponents, bifurcation diagram, Poincaré map 

and limit cycles. Section 4 presents the circuital 

implementation of the introduced memristive neural 

network. Finally, the conclusive remarks are drawn in the 

last section. 

 

 

2. Model of the new simple memristive neural  
    network 
 

A Hopfield neural network including n neurons [11, 

26] can be described by circuital equations of each neuron 

 

1
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where the state xi of the i-th neuron is the voltage on 

capacitor Ci, Ri is the membrane resistance between the 

inside and outside of the neuron, while Ii is the input bias 

current. The matrix W=(wij) is synaptic weight matrix 
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which indicates the strength of connection between 

neurons. Hence the input of each neuron comes from 

external inputs and inputs from other neurons. It is noting 

that the voltage input from the j-th neuron vj [11, 26] is 

given by 

 tanh .j jv x       (2) 

It is easy to see that, the synaptic weight wij describes the 

admittance of the resistor between the j-th neuron and the 

i-th neuron. For simplicity, a simple Hopfield neural 

network with only three neurons is considered in this work 

(see Fig. 1). Different from conventional Hopfield neural 

networks, a flux-controlled memristor [17, 38] is used as a 

synaptic weight in this new neural network. Here the flux-

controlled memristor is described by 
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where Mv is the voltage across the memristor, Mi is the 

current through the memristor.  W  is the memductance 

which is defined as 

 

 
  2 ,

dq
W a

d


 


       (4) 

 

where q and  are the charge and magnetic flux while a is 

a parameter.  

 

 

 
 

Fig. 1. A simple neural network with the presence  

of  a memristive synaptic weight. 
 

 

Based on circuital equations of each neuron (1) and 

the used memristor (3),  let Ci = 1, Ri = 1, the novel 

memristive neural network in Fig. 1 is characterized by the 

following equations 
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with i = 1, 2, 3 and the synaptic weight matrix is given by 
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In particular, the input bias current term is 

 

 1 2 3, , 0,0,
T T

I I I b   I      (7) 

 

where b is the parameter which indicates the input current 

at the third neuron. The presence of an input bias current 

makes new neural network (5) different from the 4D 

memristive neural network in [26] or the memristive 

circuit based on cellular nonlinear networks [25]. 

 

 

3. Dynamics of the proposed memristive  
    neural network 
 

When b = 0, the memristive neural network (5) has 

the line equilibrium E(0, 0, 0, φ). Moreover, neural 

network (5) is hyperchaotic for different values of a. For 

example, when a = –0.05, b = 0, and the initial conditions 

          1 2 30 , 0 , 0 , 0 0,0.01,0.01,0 ,x x x   hyperchaos 

is obtained due to the fact that neural network (5) has more 

than one positive Lyapunov exponents 1 0.029, 

2 0.0088,  3 0,  and 4 0.1151.    In this case, 

neural network (5) is similar to the studied system in [26], 

hence it will not be discussed here. 

When b ≠ 0, it can be noticed that memristive neural 

network (5) possesses no equilibrium points. Interestingly, 

when a = –0.05, b = –0.001, and the initial conditions 

          1 2 30 , 0 , 0 , 0 0,0.01,0.01,0 ,x x x   the novel 

neural network (5) can display hyperchaotic attractor 

without equilibrium as shown in Fig. 2. In this case, neural 

network (5) is hyperchaotic because it has two positive 

Lyapunov exponents 1 0.0291 0,   2 0.0098 0,  

 3 0,  and 4 0.1152 .   Obviously, this memristive 

neural network without equilibrium is categorized as a 

hyperchaotic system with hidden attractor [27-30] because 

its basin of attraction does not intersect with small 

neighborhoods of any equilibrium points.  

The Kaplan-Yorke fractional dimension [39], which 

presents the complexity of attractor, is defined by 
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where j is the largest integer satisfying 

1
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  The calculated fractional dimension of 

memristive neural network (5) when a = –0.05 and             

b = –0.001 is KYD 3.3377 3.   Therefore, it indicates a 

strange attractor. In addition, as it can be seen from the 

Poincaré map in Fig. 3, memristive neural network (5) has 

a rich dynamical behavior. 

 

 
a 

 
b 

 
c 

 

Fig. 2. Hyperchaotic attractor in the novel memristive 

neural network  for a = –0.05, and b= –0.001                    

(a) in the 1x - 2x plane, (b) in the 1x - 3x plane,                   

and (c) in the 1x - plane. 

. 

 
Fig. 3. Poincaré map in the 1x - 2x  plane, when 3x = 0. 

 

 

For a clear view of the nonlinear dynamics of 

memristive neural network (5), the bifurcation diagram is 

presented in Fig. 4 by plotting the local maxima of the 

state variable  3x t when changing the value of the 

parameter b. Furthermore, Lyapunov exponents of neural 

network (5) have been calculated using the algorithm in 

[40] and are shown in Fig. 5.  

 

 
Fig. 4. Bifurcation diagram of 3maxx  with a = –0.05 

and b as varying parameter. 

 

 

Fig. 5. Three largest  Lyapunov exponents 1,  2 ,  3  

(blue dash line, black solid line, and red dot line, 

respectively) of network (5) versus b for a = –0.05. 
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Fig. 5 suggests that the system changes from limit 

cycle to hyperchaos. This kind of transition has been 

observed in another recent work [41]. As shown in Figs. 4, 

5, there are some windows of limit cycle, of chaotic 

behavior and of hyperchaotic behavior. Fig. 6 illustrates 

the periodic orbit of memristive neural network (5) for the 

parameter b = –0.01.  

 

 
a 

  
b c 

 

Fig. 6. The periodic orbit of memristive neural network (5)       

for a = –0.05, and b = –0.01 (a) in the 1x - 2x plane,                

(b) in the 1x - 3x plane, and (c) in the 1x - plane.. 

 

In order to estimate the influence of different values 

of the parameter a in the dynamic behavior of neural 

network (5), its Lyapunov exponents versus the parameter 

a has been also reported in Fig. 7. Although the positive 

Lyapunov exponent does not mean chaos every time [42-

44], there is no ambiguity on the indication of chaos in our 

regular work. It is clear that hyperchaos is observed 

showing the noticeable role of the memristive synaptic 

weight. 

 
Fig. 7. Three largest  Lyapunov exponents 1,  2 ,  3  (blue 

dash line, black solid line, and red dot line, respectively) of 

neural network (5) versus a for b = –0.001. 

4. Circuit implementation of the memristive  
    neural network 
 

Implementation of nonlinear systems by using 

electronic circuits provides another effective approach for 

investigating dynamics of such systems. In fact, this 

rigorous and inexpensive approach has been used for 

experimental characterization of the modeled dynamics 

[45] or emulating complex business cycles [46]. Moreover, 

circuital realization of a theoretical model plays a vital role 

in practical chaos-based applications, such as secure 

communications, random numbers generator, or path 

planning for autonomous robots [47-49]. Therefore, in this 

section, a circuital realization of memristive neural 

network (5) is presented to illustrate the feasibility and 

correctness of the theoretical model.  

The designed circuit is shown in Fig. 8 where the  

state variables 1,x 2 ,x 3 ,x and  of memristive neural 

network (5) are the voltages across the capacitors C1, C2, 

C3, and C4, respectively.  

 

 
 

Fig. 8. Circuital schematic of the proposed memristive  

neural network without equilibrium (5). 

 

 

By using Kirchhoff’s circuit laws, the circuital 

equations of the designed circuit in Fig. 8 are derived as 

follows: 
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   (8) 
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The power supplies are ±15 volts while the values of 

circuit components in Fig. 8 are selected as follows:               

R1 = R4 = R5 = R8 = R11 = R13 = R = 10kΩ, R2 = 6.25kΩ,  

R3 = R10 = 5kΩ, R6 = 2kΩ, R7 = 6.667kΩ, R9 = 3.333kΩ,        

R12 = 1MΩ, C1 = C2 = C3 = C4 = 10nF, and Vb = 0.1VDC.  
 

 
a 

 
b 

 
c 

Fig. 9. Hyperchaotic attractor of the designed electronic 

circuit obtained from OrCAD (a) in the 1x - 2x plane,        

(b) in  the 1x - 3x plane, and (c) in the 1x - plane. 

Comparing circuital system (8) with the theoretical 

model (5), indeed the circuit in Fig. 8 emulates the 

memristive neural network (5). The designed circuit is 

implemented in the electronic simulation package OrCAD 

and the obtained results are reported in Figs. 9, 10.  

 

 
a 

 
b 

 
c 

Fig. 10. The periodic orbit of the designed electronic 

circuit obtained from OrCAD (a) in the 1x - 2x plane,                    

(b) in  the 1x - 3x plane, and (c) in the 1x - plane. 
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It is easy to see a good agreement between the 

theoretical attractor (Fig. 2) and the circuital one (Fig. 9). 

In order to investigate the behavior of the neural network 

with respect to the input bias term b, the value of resistor 

R12 can be varied using a trimmer. For example, when     

R12 = 100kΩ the behavior of the circuit is a periodic limit 

cycle (see Fig. 10) corresponding to an implemented value 

of b = –0.01, which can be compared to the model 

behavior reported in Fig. 6. 

 

5. Conclusions 
 

A simple neural network with a memristive synaptic 

weight has been studied in this paper through numerical 

simulations and circuital implementation. Interestingly, 

this new memristive neural network is able to show 

complex behavior, like chaos and hyperchaos in spite of its 

simple structure. Moreover, such neural network can be 

considered as a system with hidden attractor because there 

is no equilibrium. The major difference from the published 

works [25, 26] is the absence of any equilibrium points in 

new neural network (5). 

When there are more than one memristive synaptic 

weight are considered, the dimension of the network 

increases. For example, the neural network with the 

presence of two memristive synaptic weights becomes a 

5D nonlinear system. This could be studied in our next 

work. 

The combination of neural network and memristor 

leads the proposed network to interesting applications in 

neural computing as well as chaos-based systems. In 

addition, hidden attractor exhibited from the memristive 

neural network will be further explored in the future 

studies. 

 
 

Acknowledgements 

 

The authors are very grateful to the reviewers for their 

suggestions. This research is funded by Vietnam National 

Foundation for Science and Technology Development 

(NAFOSTED) under grant number 102.99-2013.06. 

 

 

References 
 

  [1] S. Haykin, Neural Network: A Comprehensive 

        Foundation, Prentice Hall, New Jersey (1998). 

  [2] C. M. Bishop, Neural Network for Pattern 

        Recognition, Clarendon Press, Oxford (1995). 

  [3] W. Yu, Inf. Sci. 158, 131 (2004). 

  [4] J. Rubio, W. Yu, Neurocomputing 70, 430 (2006).  

  [5] M. R. Guevara, IEEE Trans. Syst. Man Cybern. 13,  

        790 (1983). 

  [6] A. Babloyantz, C. Luorenco, Int. J. Neural Syst. 7,  

        461 (1996). 

  [7] K. Aihara, T. Takabe, M. Toyoda, Phys. Lett. A 144,  

        333 (1990). 

  [8] P. K. Das, W. C. Schieve, Z. J. Zeng, Phys. Lett. A  

        161, 60 (1991). 

  [9] T. Tanaka, E. Hiura, Phys. Lett. A 315, 225 (2003). 

[10] T. Li, A. G. Song, S. M. Fei, Y. Q. Guo, Nonlinear  

        Anal. Theory Methods Appl. 71, 2372 (2009). 

[11] J. J. Hopfield, Proc. Natl. Acad. Sci. USA 81, 3088  

        (1984). 

[12] X. S. Yang, Y. Huang, Chaos 16, 033114 (2006). 

[13] Q. D. Li, X. S. Yang, F. Y. Yang, Neurocomputing  

        67, 275 (2005). 

[14] A. J. Storkey, R. Valabregue, Neural Netw. 12, 869  

        (1999). 

[15] P. Zheng, W. Tang, J. Zhang, Nonlinear Dyn. 61,  

        399 (2010). 

[16] H. Bersini, P. Sener, Neural Netw. 15, 1197 (2002)  

[17] L. O. Chua, IEEE Trans. Circ. Theory 18, 507 (1971). 

[18] L. O. Chua, S. M. Kang, Proc. IEEE 64, 209 (1976). 

[19] D. B. Strukov, G. S. Steeart, R. S. Williams Nature  

        453, 80 (2008). 

[20] P. Adhikari, C. Yang, H. Kim, L. O. Chua, IEEE   

        Trans. Neural Netw. Learning Syst. 23, 1426 (2012). 

[21] R. Tetzlaff, Memristors and Memristive Systems,  

        Springer, New York (2014). 

[22] H. Kim, M. P. Sah, C. Yang, T. Roska, IEEE Trans.  

        Circuit Syst. I- Regular Pap. 59, 148(2012). 

[23] S. Shin, K. Kim, S. M. Kang, IEEE Trans.  

        Nanotechnology 10, 266 (2011). 

[24] A. L. Wu, J. Zhang, Z. G. Zeng, Phys. Lett. A 357,  

        1661 (2011).   

[25] A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza,  

        Int. J. Bifur. Chaos 22, 1250070 (2012). 

[26] Q. Li, S. Tang, H. Zeng, T. Zhou, Nonlinear Dyn.  

        DOI: 10.1007/s11071-014-1498-7 (2014). 

[27] G. A. Leonov, N. V. Kuznetsov, Int. J. Bifur. Chaos  

        23, 1330002 (2013). 

[28] G. A. Leonov, N. V. Kuznetsov, O. A. Kuznetsova, S.  

        M. Seledzhi, V. I. Vagaitsev, Trans. Syst. Control 6,  

        54 (2011). 

[29] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, 

        Phys. Lett. A  375, 2230 (2011). 

[30] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, 

        Physica D  241, 1482 (2012). 

[31] S. Jafari, J. C. Sprott, Chaos Solitons Fractals 57, 79  

        (2013). 

[32] X. Wang, G. R. Chen, Commun. Nonlinear Sci.  

        Numer. Simulat. 17, 1264 (2012). 

[33] Z. C. Wei, I. Pehlivan, Optoelectron. Adv. Mater.– 

       Rapid Comm. 6,742(2012). 

[34] Z. C. Wei, Phys. Lett. A 376, 102 (2011). 

[35] S. Jafari, J. C. Sprott, S. M. R. H. Golpayegani, Phys.  

        Lett. A 377, 699 (2013). 

[36] Z. C. Wei, Y. Tang, H. Chen, I. Pehlivan,  

        Optoelectron. Adv. Mater.–Rapid Comm. 7, 984  

        (2013). 

[37] V.-T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Int.  

        J. Bifur. Chaos 24, 1450073 (2014). 

[38] M. Itoh, L. O. Chua, Int. J. Bifur. Chaos 18, 3183  

        (2008). 

[39] P. Frederickson, J. L. Kaplan, E. D. Yorke, J. A.  

        Yorke, J. Differential Equations 49, 185 (1983). 

[40] A. Wolf, J. B. Swift, H.L. Swinney, J.A. Vastano,  

        Physica D 16, 285 (1985). 



Hidden hyperchaotic attractor in a novel simple memristive neural network                                         1163 

 
[41] A. L. Fitch, D. Yu, H. H. C. Iu, V. Sreeram, Int. J.  

        Bifur. Chaos  22, 1250133 (2012). 

[42] G. A. Leonov, N. V. Kuznetsov, Int. J. Bifur. Chaos 

        17, 1079 (2007). 

[43] N. V. Kuznetsov, G. A. Leonov, Proc. vol. 2005 

        Intern. Conf. Phys. Contr., Saint Petersburg, Russia, 

        2005, p. 596.  

[44] N. V. Kuznetsov, T. N. Mokaev, P. A. Vasilev,  

        Commun. Nonlinear Sci. Numer. Simulat. 19, 

        1027 (2014). 

[45] X. F. Li, K. E. Chlouverakis, D. L. Xu, Nonlinear 

        Anal. RWA 10, 2357 (2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[46] S. Bouali, A. Buscarino, L. Fortuna, M. Frasca, 

        L.V. Gambuzza, Nonlinear Anal. RWA 13, 2459 

        (2012). 

[47] K. M. Cuomo, A. V. Oppenheim, Phys. Review Lett.  

        71, 65 (1993). 

[48] M. E. Yalcin, J. A. K. Suykens, J. Vandewalle, IEEE  

        Trans Circuit Syst. I- Regular Pap.  51, 1395 (2004). 

[49] P. Arena, L. Fortuna, M. Frasca, Int. J. Circ. Theory  

        Appl. 30, 349 (2002). 

  

 

 
_____________________ 
*Corresponding author: pvt3010@gmail.com 


